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We compare the structural properties of nanostructured Ge films deposited by pulsed laser
deposition (PLD) and crossed-beam pulsed laser deposition (CBPLD). We show that CBPLD is
an excellent technique for reduction of micron-sized particles which affect the quality of
nanostructured films. We demonstrate that CBPLD in the equivalent dynamic conditions of
PLD yields similar nanostructured Ge films with particle sizes of �20 nm. Combining different
characterization techniques we conclude that under these deposition conditions the Ge
nanoparticles are amorphous.

Keywords: Nanoparticles; Nanostructured materials; Laser ablation; Germanium, Crossed-
beam PLD

1. Introduction

Nanostructured materials, and in particular semiconductor nanostructures [1] and thin
films, may be exploited for their novel electronic and optical properties. These
structures are of great interest since they have potential applications in future quantum
and photonic devices [2].

Pulsed laser deposition (PLD) is a highly versatile technique for the growth of thin
films and nanostructured materials. In PLD, the deposition energy can be adjusted over
a wide range that makes possible the growth of dense films (e.g. to be used as
waveguides) or alternatively nanocrystalline/cluster–assembled structures with excellent
control over the cluster size (by depositing under a moderate pressure gas) [3, 4].
Nanostructured semiconductor films (including, e.g. Si nanostructures with remarkable
photoluminescence properties) can be grown with this approach [5–10]. However, the
structural properties of such nanostructures are still poorly characterized. It has been
claimed that in general these nanostructures are crystalline, yet little proof has been
offered [11, 12]. Often they are simply referred to as ‘nanoparticles’, without any
structural characterization.

The lack of information on the structural properties of semiconductor nanoparticles
deposited by PLD is directly related to the principle of this deposition technique. One of
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the major drawbacks of PLD is the occurrence of micron-sized particulates (droplets) in
the deposited films which affects film quality and limits the applicability of
characterization techniques. In particular, analyses carried out by large-scale
characterization techniques such as X-ray diffraction (XRD) is hindered in the
presence of large crystallites, since these obscure the investigation of the morphology
and overall properties of the nanostructured films.

In this work, we investigate the structural properties of cluster-assembled Ge films
using an original deposition method of nanostructured droplet-free films. Recently, it
has been shown that the droplet density in deposited films may be drastically reduced
by using crossed-beam pulsed laser deposition (CBPLD) in vacuum [13]. CBPLD under
moderate gas pressure leads to a drastic reduction of droplets, yet still yields
nanostructured films. The aim of this work is to characterize the crystalline nature
of the Ge clusters that compose the films.

2. Experimental details

Germanium nanostructured films were grown by both conventional PLD and by
CBPLD. All Ge films were deposited at room temperature, with a film thickness of
�600 nm. (The thickness of deposited films was measured by means of a DEKTAK
profilometer.) A polycrystalline Ge target (99.99%) was placed on a rotating holder
inside a vacuum chamber. Radiation from a pulsed KrF laser (wavelength 248 nm,
pulse duration 17 ns, repetition rate 20Hz) was used to ablate the target. The
experimental chamber was pumped down to 10�6 torr, then the gas flow was slowly
introduced into the chamber. Laser ablation was carried out under 1 torr He
background pressure. The distance between substrate and target was fixed at 50mm.
The laser density on the target was fixed at 5 J/cm2. The CBPLD experimental set-up is
shown in figure 1. The laser beam is separated into two beams which are focused on
similar rotating Ge targets, with a laser density of 5 J/cm2 for each target. The
directional plasmas of the two targets were perpendicular to one another and

Figure 1. Schematic diagram of the CBPLD set-up.
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the distance between the targets and interaction zone was 15mm. The interaction zone–
substrate distance was fixed at 35mm and the whole target–substrate path of the
ablated material was 50mm. Two perpendicular plasma plumes interact in a collision
zone and the third resulting plume is directed toward a substrate. The diaphragm
aperture width was adjusted to 1.3 cm in order to cut off the direct droplet deposition
and let free the laser beam paths.

3. Results and discussion

Figure 2(a) displays a scanning electron microscopy (SEM) micrograph of a Ge film
deposited by PLD. A high density of droplets (1–5 micron in diameter) is clearly visible
in the image. Figure 2(b) shows an SEM image of a Ge film deposited by CBPLD.

Figure 2. SEM images (25� 18 mm2) of (a) Ge film deposited by conventional PLD (1 torr He, 5 J/cm2,
target–substrate distance 50mm, 600 nm thickness) and (b) a droplet-free Ge film deposited by CBPLD (same
experimental conditions as in (a)). The insets in (a) and (b) display cross–sectional SEM images
(5.5� 2.4 mm2).
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In this micrograph, only a few droplets are visible in an area of hundreds of square

microns. The insets of figures 2(a) and (b) display cross-sectional SEM images
(side view). A statistical analysis reveals that the density of droplets for the film

deposited by CBPLD under 1 torr He is �20 times lower than for the film deposited by

conventional PLD.
This mechanism is rationalized as follows. The split laser beam is focused on two

perpendicular (rotating) targets and creates two interacting synchronized plasma

plumes. The ablated species (atoms, ions and clusters) interact in the collision zone and

are deflected towards the substrate. The droplets, which are slow and heavy, traverse

the interaction zone with little or no perturbation of their original trajectories. Thus, the

paths of the atomic species and droplets are spatially separated. The substrate is placed

along the direction of the deflected atomic species and screened from particulates by a

diaphragm. Even though the diaphragm screens the particulates, some of the ablated

material will reach the substrate due the eclipse effect [14], and this amounts to �25%
of deposited material. Thus the deposited film material consists of �75% of the product

of interaction of the plasma plumes [15].
To compare the nanoscale structure of Ge films deposited by PLD and CBPLD, we

performed atomic force microscopy (AFM) measurements. Figure 3(a) shows the AFM

image of Ge film deposited by PLD. A histogram of the size distribution is displayed in

the inset (the average size of Ge nanoparicles is �20 nm). An AFM image of the Ge film

deposited by CBPLD is shown in figure 3(b). The corresponding histogram is shown in

the inset (the average size of the nanoparticles is �17 nm). The deposition conditions of

both films were chosen in such a way as to conserve the deposition dynamics (the

substrate–target distance was similar for PLD and CBPLD). The nanoscale structure of

both films is similar. Thus, we conclude that the deposition by CBPLD enables a

significant reduction of droplet density without changing film morphology at the
nanoscale.

To study the crystallinity of Ge nanostructured films, the samples were analysed by

XRD. In figure 4(a) and (b) we report XRD patterns of Ge films deposited by PLD and

CBPLD, respectively. For both patterns, the large broad background indicates the

presence of amorphous Ge. The film deposited by PLD (figure 4a) exhibits peaks which

are typical of polycrystalline Ge. The peaks are very narrow with a full width at half

maximum (FWHM) of the (111) diffraction peak equal to 0.2�, which corresponds to

the resolution of the diffractometer. From this, crystallite size is estimated to be larger

than 50 nm. By contrast, the XRD pattern of the film grown by CBPLD (figure 4b)

does not show any Ge peaks. Thus, the narrow peaks in the XRD pattern of the

PLD-deposited Ge film are attributed to the droplets in the film.
We now discuss the structural nature of the Ge clusters composing the film. If these

were crystalline, their typical size of 20 nm would yield broad peaks in the XRD pattern.

In particular, we estimate that the (111) diffraction peak would have a FWHM of at

least 0.7�. Such a peak is clearly missing from the pattern (figure 4b), therefore we

conclude that individual Ge nanoparticles are amorphous.
To confirm the amorphous nature of Ge nanoparticles deposited by PLD, we

investigated Ge film by transmission electron microscopy (TEM). Figure 5 shows a

TEM image of Ge film deposited by PLD under 1 torr He, 5 J/cm2, target–substrate

distance 50mm. The image demonstrates the amorphous nature of Ge nanoparticles
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and thus confirms the results obtained from the XRD analysis. The average size of Ge
nanoparticles characterized by TEM is equal to 14� 4 nm, which is much smaller than
the nanoparticle size obtained by AFM analysis. We believe that TEM results are more

reliable in this case because of possibility of tip convolution effects in the AFM analysis.

4. Conclusion

In conclusion, we investigated the crystallinity of Ge cluster-assembled films deposited
by PLD and CBPLD under moderate gas pressure. We showed that CBPLD allows us

Figure 3. AFM images of Ge films (a) deposited by PLD (1 torr He, 5 J/cm2, target–substrate distance
50mm, 600 nm thickness), and (b) deposited by CBPLD (same experimental conditions as in figure 2b). The
insets in (a) and (b) display the statistical analysis of nanoparticle size.
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to reduce drastically (by a factor of �20) the density of micron-sized droplets that are
present in the films deposited by PLD. We also demonstrated that the nanoscale
morphology of Ge films is similar for both PLD and CBPLD, and the average size of
the nanoparticles does not change for analogous deposition conditions. We obtained
the size of nanoparticles equal to 17� 4 nm by AFM and equal to 14� 4 nm by TEM
analysis. Finally, we demonstrated that under these deposition conditions, Ge
nanoparticles deposited by PLD are amorphous.
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Figure 4. X-ray diffraction patterns (a) of Ge film deposited by PLD (1 torr He, 5 J/cm2, target–substrate
distance 50mm, 600 nm thickness), and (b) of a droplet-free film deposited by CBPLD (same experimental
conditions as in figure 2b).

Figure 5. TEM image of Ge film deposited by PLD (1 torr He, 5 J/cm2, target–substrate distance 50mm).
The inset displays the statistical analysis of nanoparticle size.
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